Solving Linear Inequalities

Online Tutoring Is The Easiest, Most Cost-Effective Way For Students To Get The Help They Need Whenever They Need It.

SIGN UP FOR A FREE TRIAL




Linear inequalities is the inequalities where the degree of the variables is one. An inequality equation can contain variables, constants and exponents for the variables. Inequality is the equation which has less than or greater than symbols in it i.e. '<' and '>' respectively There are different mathematical operations that can be used in an inequality like addition, subtraction, multiplication and division.      
              
Example 1: Find the solution of the inequality equation 7 x – 1 > 20?
Solution: Given is the inequality equation with one unknown variables x.
7 x - 1 > 20 is a linear inequality with greater than sign.
Add 1 on both sided of the equation.
This gives, 7 x - 1 + 1 > 10 + 1; 7 x > 21;
Now divide the inequality by 7 on both sides of the equation.
Therefore, 7 x/ 7 > 21 /7; x > 3.
Hence the solution to the linear inequality is x > 3.
 

Example 2: Find the solution of the inequality equation 55 x - 16 < 94?
Solution: Given is the inequality equation with one unknown variables x.
55 x - 16 < 94 is a linear inequality with lesser than sign.
Add 16 on both sided of the equation.
This gives, 55 x - 16 + 16 < 94 + 16; 55 x < 110;
Now divide the inequality by 55 on both sides of the equation.
Therefore, 55 x/ 55 < 110 /55; x < 2.
Hence the solution to the linear inequality is x < 2.


HAVE A QUESTION? Chat With Our Tutoring Experts Now