Circumference Equation

Online Tutoring Is The Easiest, Most Cost-Effective Way For Students To Get The Help They Need Whenever They Need It.

SIGN UP FOR A FREE TRIAL




A circle is set of all the points that are in the same plane and equidistant from a central point. The radius of a circle is a line segment that joins center of the circle and any point on the circle. The circumference equation involves calculation of circle’s circumference or perimeter. Circumference is the distance or path around the circle. The circumference equation is pie multiplied by diameter. The formula for circumference of a circle is 2πr. The formula for the length of arc with central angle θ is θ x (π/180) x r. Circumference equation is a very useful tool. 

Example 1: A Gardner has to plant a bush round the circular park. The distance from the center of the park to the edge of the park is 50 m. Find out the length of the bush.

Solution 1:  We have given,  radius r = 50 m.

 Circumference of a circle = 2 π r

 We get, = 2 π x 50 = 2 x 3.14 x 50 = 314 m.

 The Length of the bush will be 314 m.
 
Example 2: In the below mentioned figure, find the circumference of the circle.

 
Solution 2: Given, Radius of circle = 70 cm

 In this question we have to find the circumference of circle.

 We Know that, Circumference of circle = 2 x pie x r

 Here pie = 22/7 or 3.14 and r = 70 cm

 Therefore, Circumference of circle = 2 x 22/7 x 70 = 440 cm.

HAVE A QUESTION? Chat With Our Tutoring Experts Now